M1.
(a)

Protein synthesis	$\mathrm{L} ;$
Modifies protein	$\mathrm{H} ;$
Aerobic respiration	$\mathrm{N} ;$

(b) 1800-2200;
$1.8,2.0$ or 2.2 in working or answer = 1 mark. Ignore units in answer.

1 mark for an incorrect answer in which student clearly divides measured length by actual length (of scale).

Accept I/ A or I / O for 1 mark but ignore triangle.
Accept approx 60 mm divided by $30 \mu \mathrm{~m}$ for 1 mark

M2.(a) 1. Large / dense / heavy cells;
2. Form pellet / move to bottom of tube (when centrifuged);
3. Liquid / supernatant can be removed.

Must refer to whole cells.
(b) Break down cells / cell parts / toxins.

Idea of 'break down / digestion' needed, not just damage
(c) 1. To stop / reduce them being damaged / destroyed / killed;

Reject (to stop) bacteria being denatured.
2. By stomach acid.

Must be in context of stomach.
(d) 1. More cell damage when both present / A;
2. Some cell damage when either there on their own / some cell damage in B and $C ;$

MP1 and MP2 - figures given from the graph are insufficient.
3. Standard deviation does not overlap for A with B and C so difference is real;

MP3 and MP4 both aspects needed to gain mark.
4. Standard deviations do overlap between B and C so no real difference.

MP3 and MP4 accept reference to significance / chance for 'real difference'
(e) 1. Enzyme (a protein) is broken down (so no enzyme activity);

Accept hydrolyse / digested for 'broken down'.
2. No toxin (as a result of protein-digesting enzyme activity);

Must be in the correct context.
3. (So) toxin is protein.

This must be stated, not inferred from use of 'protein-digesting enzyme'.

M3.(a) 1. How to break open cells and remove debris;
2. Solution is cold / isotonic / buffered;
3. Second pellet is chloroplast.
(b) 1. A stroma;
2. B granum.

Accept thylakoid
(c) $\left(\frac{\text { length of chloroplast }}{\text { length of bar }}\right)_{\mu \mathrm{m}}$
(d) Two of the following for one mark:

Mitochondrion / ribosome / endoplasmic reticulum / lysosome / cell-surface membrane.

M4.(a) 1. Starch formed from α-glucose but cellulose formed from β-glucose;
2. Position of hydrogen and hydroxyl groups on carbon atom 1 inverted.
(b) 1. Insoluble;
2. Don't affect water potential;

OR
3. Helical;

Accept form spirals
4. Compact;

OR
5. Large molecule;
6. Cannot leave cell.
(c) 1. Long and straight chains;
2. Become linked together by many hydrogen bonds to form fibrils;
3. Provide strength (to cell wall).

M5.(a) 1. (If injected into egg), gene gets into all / most of cells of silkworm;
2. So gets into cells that make silk.
(b) 1. Not all eggs will successfully take up the plasmid;
2. Silkworms that have taken up gene will glow.
(c) Promoter (region / gene).
(d) 1. So that protein can be harvested;
2. Fibres in other cells might cause harm.

M6.(a) 1. Add drop of water to (glass) slide;
2. Obtain thin section (of plant tissue) and place on slide / float on drop of water;
3. Stain with / add iodine in potassium iodide.
3. Allow any appropriate method that avoids trapping air bubbles
4. Lower cover slip using mounted needle.
(b) 1. W - chloroplast, photosynthesis;
2. $\quad \mathbf{Z}$ - nucleus, contains DNA / chromosomes / holds genetic information of cell.
(c) 1. High resolution;
2. Can see internal structure of organelles.
(d) Length of bar in $\mathrm{mm} \times 1000$.

M7.(a) 1. Bilayer;
Accept double layer
Accept drawing which shows bilayer
2. Hydrophobic / fatty acid / lipid (tails) to inside;
3. Polar / phosphate group / hydrophilic (head) to outside;
2. \& 3. need labels
2. \& 3. accept water loving or hating
(b) (i) 1. (Rough endoplasmic reticulum has) ribosomes; accept "contains / stores"
2. To make protein (which an enzyme is);

Accept amino acids joined together / (poly)peptide
Reject makes amino acids
Ignore glycoprotein
(ii) (Golgi apparatus) modifies (protein)

OR

packages / put into (Golgi) vesicles

OR

transport to cell surface / vacuole;
Accept protein has sugar added
Reject protein synthesis
Accept lysosome formation

